 image/svg+xml

 image/svg+xml

What we doJoin usContact usStories

What we doJoin usContact usStories

Generate pdf with aws lambda
Home/Stories/Generate pdf with aws lambda
Franco Berton - May 21, 2021
#pdf#aws#lambda#nodejs#puppeteer
This article explains how to generate a pdf with aws lambda in NodeJs using the puppeteer library.
Index

	1. Serverless file
	2. Implementing a microservice for pdf download
	3. Chromium binaries inclusion on bundle
	4. Result
	5. Conclusion

Introduction: This article wants to be an introductory guide on how to generate a pdf with AWS Lambda in Node Js with Puppeteer library.

Prerequisite: The following guide has as a prerequisite the integration of the following modules:

	serverless: framework aimed at creating applications composed of microservices and facilitating distribution within the platform;
	serverless-bundle: plugin that optimally packages your ES6 or TypeScript Lambda functions relying on the internal plugin serverless-webpack;
	serverless-offline: plugin emulates AWS and API Gateway on your local machine to speed up your development cycles;
	puppeteer-serverless: important plugin for generating pdf with AWS Lambda. Internally it includes as dependencies: chrome-aws-lambda and puppeteer-core

The dependencies of our package.json will look like this:

"dependencies": {
 "puppeteer-serverless": "^2.0.0"
},
"devDependencies": {
 "serverless": "^2.11.1",
 "serverless-bundle": "^4.0.1",
 "serverless-offline": "^6.8.0",
 "typescript": "^3.9.7"
}

1. Serverless file

The first step to generate a pdf with AWS Lambda in NodeJsinvolves defining a microservice within the serverless file, which contains the configuration for the deployment.

The microservice will be reachable externally with a simple get api.
Here is the definition of the serverless file:

service: pdf

plugins:
 - serverless-bundle
 - serverless-offline

package:
 individually: true

custom:
 serverless-offline:
 location: .webpack/service
 bundle:
 sourcemaps: false
provider:
 name: aws
 runtime: nodejs12.x
 region: eu-central-1
 stage: test
 apiGateway:
 shouldStartNameWithService: true
 binaryMediaTypes:
 - '*/*'
 tracing:
 apiGateway: true
 lambda: true
functions:
 downloadPdf:
 handler: lambdas/download-pdf.main
 events:
 - http:
 path: download-pdf
 method: get
 cors: true
 timeout: 180

2. Creation of the lambda function

At this point we need to define a lambda function to do the magic.
The pdf generation process includes:

	definition of html content to be printed;
	loading and opening the html file with puppeteer;
	generation of the pdf file with puppeteer;
	conversion of content to base64.

import puppeteer from "puppeteer-serverless";

export const main = async (event: any, context: any): Promise<any> => {
 let browser = null;
 let pdf = null;

 try {
 browser = await puppeteer.launch({});
 const page = await browser.newPage();
 await page.setContent("<html><body><p>Test</p></body></html>", {
 waitUntil: "load",
 });

 pdf = await page.pdf({
 format: "A4",
 printBackground: true,
 displayHeaderFooter: true,
 margin: {
 top: 40,
 right: 0,
 bottom: 40,
 left: 0,
 },
 headerTemplate: `
 <div style="border-bottom: solid 1px gray; width: 100%; font-size: 11px;
 padding: 5px 5px 0; color: gray; position: relative;">
 </div>`,
 footerTemplate: `
 <div style="border-top: solid 1px gray; width: 100%; font-size: 11px;
 padding: 5px 5px 0; color: gray; position: relative;">
 <div style="position: absolute; right: 20px; top: 2px;">
 /
 </div>
 </div>
 `,
 });
 } finally {
 if (browser !== null) {
 await browser.close();
 }
 }

 return {
 headers: {
 'Content-type': 'application/pdf',
 'content-disposition': 'attachment; filename=test.pdf'
 },
 statusCode: 200,
 body: pdf.toString('base64'),
 isBase64Encoded: true
 }
}

3. Chromium binaries inclusion on bundle

As a last step we are going to update the serverless file with the inclusion of chromium binary files in the bundle, so that the pdf download can work on AWS

The binary files are present inside the chrome-aws-lambda module and therefore, they will be:

	node_modules/chrome-aws-lambda/bin/aws.tar.br
	node_modules/chrome-aws-lambda/bin/chromium.br
	node_modules/chrome-aws-lambda/bin/swiftshader.tar.br

service: pdf

plugins:
 - serverless-bundle
 - serverless-offline

package:
 individually: true

custom:
 serverless-offline:
 location: .webpack/service
 bundle:
 sourcemaps: false
 copyFiles:
 - from: 'node_modules/chrome-aws-lambda/bin/aws.tar.br'
 to: './bin'
 - from: 'node_modules/chrome-aws-lambda/bin/chromium.br'
 to: './bin'
 - from: 'node_modules/chrome-aws-lambda/bin/swiftshader.tar.br'
 to: './bin'
provider:
 name: aws
 runtime: nodejs12.x
 region: eu-central-1
 stage: test
 apiGateway:
 shouldStartNameWithService: true
 binaryMediaTypes:
 - '*/*'
 tracing:
 apiGateway: true
 lambda: true
functions:
 downloadPdf:
 handler: lambdas/download-pdf.main
 events:
 - http:
 path: download-pdf
 method: get
 cors: true
 timeout: 180

4. Result

5. Conclusion

The proposed solution highlights the simplicity and immediacy of generating a pdf with AWS lambda.

As an alternative to this approach, you can use the [PDFkit] plugin (https://www.npmjs.com/package/pdfkit), but I consider it a more complex and expensive way.

The code of the proposed solution can be viewed in this Github repository .

If you like my article, share it.

Your support and feedback mean so much to me.

Create React App: import modules using aliases with Webpack and Typescript
Aug 28, 2020
Using Webpack and Typescript is possible to forget relative paths and to use aliases for better developer experience.

Pipe function in Javascript
Aug 03, 2020
In this article we are going to see some concepts of functional programming: we are going to give a definition and implement a pipe function in Javascript.

Implementing multi-language (i18n) without any library in React Hooks
Jul 20, 2020
In this article, we are going to explain how to set up a translation/i18n internalization system with only React hooks. This article follows the first article of the series How To Implement a Translation System Without Any Library.

 image/svg+xml

Solution design and development for your business and startup.

Blog
StoriesMedium
Dev
GithubCodepen
Follow
LinkedinFacebookTwitterInstagram
Legal
Privacy policyCompany informationsWork with us

 image/svg+xml

Italiano
2018 - Now © Wavelop Srls - F.C. and VAT 04504530272

Based in Venice

	.st0{fill:#545352;}
	.st1{fill:url(#SVGID_1_);}

	
		
		
		
		
		
		
		
	
	
		
		
		
		
	
	

Sorry but our site cannot work without Javascript! Consider please to activate it or upgrate to a new browser.
Siamo dispiaciuti ma il nostro sito non può essere visualizzato senza Javascript! Per favore considera di attivarlo oppure di aggiornare il browser ad uno nuovo.

